717 research outputs found

    Thermally stable low current consuming gallium and germanium chalcogenides for consumer and automotive memory applications

    No full text
    The phase change technology behind rewritable optical disks and the latest generation of electronic memories has provided clear commercial and technological advances for the field of data storage, by virtue of the many well known attributes, in particular scaling, cycling endurance and speed, that chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based memory cells are a major factor in chip design in real world applications, often the thermal stability of the device can be a major obstacle in the path to the full commercialisation. In this work we describe our research in material discovery and characterization for the purpose of identifying more thermally stable chalcogenides for applications in PCRAM

    Persistent currents in a graphene ring with armchair edges

    Full text link
    A graphene nano-ribbon with armchair edges is known to have no edge state. However, if the nano-ribbon is in the quantum spin Hall (QSH) state, then there must be helical edge states. By folding a graphene ribbon to a ring and threading it by a magnetic flux, we study the persistent charge and spin currents in the tight-binding limit. It is found that, for a broad ribbon, the edge spin current approaches a finite value independent of the radius of the ring. For a narrow ribbon, inter-edge coupling between the edge states could open the Dirac gap and reduce the overall persistent currents. Furthermore, by enhancing the Rashba coupling, we find that the persistent spin current gradually reduces to zero at a critical value, beyond which the graphene is no longer a QSH insulator

    A Keyword-based Monolingual Sentence Aligner in Text Simplification

    Get PDF

    Conditional random pattern model for copy number aberration detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number aberration (CNA) is very important in the pathogenesis of tumors and other diseases. For example, CNAs may result in suppression of anti-oncogenes and activation of oncogenes, which would cause certain types of cancers. High density single nucleotide polymorphism (SNP) array data is widely used for the CNA detection. However, it is nontrivial to detect the CNA automatically because the signals obtained from high density SNP arrays often have low signal-to-noise ratio (SNR), which might be caused by whole genome amplification, mixtures of normal and tumor cells, experimental noise or other technical limitations. With the reduction in SNR, many false CNA regions are often detected and the true CNA regions are missed. Thus, more sophisticated statistical models are needed to make the CNAs detection, using the low SNR signals, more robust and reliable.</p> <p>Results</p> <p>This paper presents a conditional random pattern (CRP) model for CNA detection where much contextual cues are explored to suppress the noise and improve CNA detection accuracy. Both simulated and the real data are used to evaluate the proposed model, and the validation results show that the CRP model is more robust and reliable in the presence of noise for CNA detection using high density SNP array data, compared to a number of widely used software packages.</p> <p>Conclusions</p> <p>The proposed conditional random pattern (CRP) model could effectively detect the CNA regions in the presence of noise.</p

    Early utilization of hypertonic peritoneal dialysate and subsequent risks of non-traumatic amputation among peritoneal dialysis patients: a nationwide retrospective longitudinal study

    Get PDF
    BACKGROUND: The hemodialysis (HD) population has a particularly high incidence of amputation, which is likely associated with decreased tissue oxygenation during HD. However, information about the risk factors leading to amputation in peritoneal dialysis (PD) patients is limited. Here, we have investigated the association between the use of hypertonic peritoneal dialysate (HPD) and subsequent amputation in PD patients. METHODS: Based on the data from the Taiwan National Health Insurance research database, this observational cohort study enrolled 203 PD patients who had received HPD early during treatment and had not undergone amputation and 296 PD controls who had not undergone amputation. Subjects were followed through until the end of 2009 and the event rates of new non-traumatic amputation were compared between groups. RESULTS: The incidence of amputation was 3 times higher for the HPD cohort than for the comparison cohort (23.68 vs. 8.01 per 1000 person-years). The hazard ratio (HR) for this group, estimated using a multivariable Cox model, was 2.48 (95% confidence interval [CI] = 1.06–5.79). The HR for patients with both diabetes and early adoption of HPD increased to 44.34 (95% CI = 5.51-357.03), compared to non-HPD non-diabetic PD controls. CONCLUSION: Early utilization of HPD in PD patients is associated with increasing risk of amputation; this risk considerably increases for those with concomitant diabetes

    Crystallisation study of the Cu<sub>2</sub>ZnSnS<sub>4</sub> chalcogenide material for solar applications

    No full text
    Second generation thin-film chalcogenide materials, in particular CuInGa(S,Se)2 (CIGS) and CdTe, have been among the most promising and quickly became commercial candidates for large-scale PV manufacturing. These materials offer stable and efficient (above 10%) photovoltaic modules fabricated by scalable thin-film technologies and cell efficiencies above 20 % (CIGS). Indium-free kesterite-related materials such as Cu2ZnSnS4 have attracted significant research interest due to their similar properties to CIGS. In these materials, indium is replaced with earth-abundant zinc and tin metals. The quaternary semiconductor Cu2ZnSnS4(CZTS) is a relatively new photovoltaic material and is expected to be interesting for environmentally amenable solar cells, as its constituents are nontoxic and abundant in the Earth's crust. The CZTS thin films show p-type conductivity, a band gap of 1.44–1.51 eV that is ideal to achieve the highest solar-cell conversion efficiency, and relatively high optical absorption in the visible light range

    In-fiber all-optical modulation based on an enhanced light-matter interaction with graphene

    No full text
    A graphene-based, high speed, in-fiber optical modulator has been demonstrated on a low-loss side-polished optical fiber platform. These results highlight the potential for robust and efficient integration of low-dimensional materials within standard telecom fibers

    Nonparetic Knee Extensor Strength Is the Determinant of Exercise Capacity of Community-Dwelling Stroke Survivors

    Get PDF
    Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects’ exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21±0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living
    • …
    corecore